Optimal numerical approximation of a linear operator
نویسندگان
چکیده
منابع مشابه
A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملNumerical homogenization via approximation of the solution operator
The paper describes techniques for constructing simplified models for problems governed by elliptic equations involving heterogeneous media. Examples of problems under consideration include electro-statics and linear elasticity in composite materials, and flows in porous media. A common approach to such problems is to either up-scale the governing differential equation and then discretize the u...
متن کاملNumerical Approximation of a One-Dimensional Elliptic Optimal Design Problem
We address the numerical approximation by finite element methods of an optimal design problem for a two phase material in one space dimension. This problem, in the continuous setting, due to high frequency oscillations, often has not a classical solution and a relaxed formulation is needed to ensure existence. By the contrary, the discrete versions obtained by numerical approximation have a sol...
متن کاملLinear-quadratic approximation of optimal policy problems
We consider a general class of nonlinear optimal policy problems involving forward-looking constraints (such as the Euler equations that are typically present as structural equations in DSGE models), and show that it is possible, under regularity conditions that are straightforward to check, to derive a problem with linear constraints and a quadratic objective that approximates the exact proble...
متن کاملAsymptotically Optimal Approximation and Numerical Solutions of Diierential Equations Asymptotically Optimal Approximation and Numerical Solutions of Diierential Equations
Given nite subset J IR n , and a point 2 IR n , we study in this paper the possible convergence, as h ! 0, of the coeecients in least-squares approximation to f(+hh) from the space spanned by (f(+ hj) j2J. We invoke thèleast solution of the polynomial interpolation problem' to show that the coeecient do converge for a generic J and , provided that the underlying function f is suuciently smooth....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1983
ISSN: 0024-3795
DOI: 10.1016/0024-3795(83)80045-7